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Trigonometric polynomials induced by equioscillation with respect to a given
periodic function f(t) at appropriately shifted equally spaced nodes are introduced.
Two sequences of functionals AnU), BnU) (n= 1, 2, ... ,), corresponding to the
specific choice of shift-parameters are defined and their approximation properties
are investigated. It is shown that these functionals are closely related to the Fourier
coefficients of f(l). It is proved that under some conditions an approximated
function is determined by AnU), BnUl, n = I, 2, ... , uniquely up to an additive con
stant. It is also shown that the rate at which AnU) and BnU) approach zero gives
valuable information about the differential properties of/(I). ( 1987 Academic Press.

Inc.

I. INTRODUCTION

Let C[ - I, I] be the Banach space of real continuous functions on
[-I, I] equipped with the supnorm (1Ifll=max l,,;x,,;llf(x)l) and
denote by nil the subspace of C[ -I, I] consisting of all real algebraic
polynomials of degree ~ n. To every f(x) E C[ - I, I] there corresponds the
unique polynomial of best uniform approximation e,,(.f; x) satisfying
En (.f) = Ilf-ellil =minpE7rn Ilf-pll· The well-known Chebyshev charac
terization theorem establishes a close relation between the optimality of
eIl(.f; x) and the existence of a special set of points {x 't }%:!J'
-I ~ x:+ I < x,~ < ... < X( < xt ~ I (a so-called Chebyshev alternation
set) such that

k = 0, I, ... , n + I, ( I )

where y equals I or - 1.
Since one has usually no prior knowledge about the location of such

points x't, indirect methods were proposed for approximate determination
of ell(.f; x). The first step in this direction was taken by de La Vallee-
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Poussin [6], who introduced the polynomials vn(f; X; x) defined together
with the parameters VAf; X) by the linear system

k = 0, 1,..., n + 1, (2)

where X= {xkH~b is a fixed set of n+2 (distinct) points of [-1,1]. We
will refer to the vn-polynomials as the alternating polynomials. The
functional Vn(f; X) is known to be of great theoretical importance, since
[7]

IV,,(f; X)I :( En(f)· (3)

The investigations of de La Vallee-Poussin have been continued by
Bernstein [1], who posed the important question of a favorable choice of
the set X and showed that for a family of functions analytic in a complex
domain containing the interval [-1,1] the points {xnk~b of the
Chebyshev alternation set tend asymptotically to the fixed set of points
T= {cos[knl(n + 1)] }k~b. Under the assumption that f(x) may be
expanded in an absolutely convergent Fourier-Chebyshev series
f(x) = co/2 + L:f~ 1 Ck Tk(x), Bernstein also established the relationship [2]

V,,(f; T) = C,,+ 1 + c 3("+ I) + c5(n+ I) + .... (4)

Motivated by the results of Bernstein, Eterman initiated the investigation
of approximation properties of the vn(f; T; x)-polynomials [8, 10]. Some
representations of the v,,(f; T; x)-polynomials and the Vn(f; T)-functionals
may also be found in Meinardus [16], Rivlin [19], and Phillips and
Taylor [18]. The operator norm of vn(f; T; x) was estimated by
Malozemov [14] and Cheney and Rivlin [5]. Several numerical
applications of the vn(f; T; x)-polynomials have been discussed by Eterman
[9, 11] and Brutman [3, 4]. It should be pointed out that the effectiveness
of the vn(f; T; x)-polynomials as an approximation tool is based on the fact
that for sufficiently smooth functions, v,,(f; T; x) is a good approximation
to the minimax polynomial while the parameter V,,(f; T) may serve as a
reasonable estimator of the approximation error.

Turning now to the periodic case we first mention the well-known fact
that by analogy with (1) for any f(t) belonging to the space e2 l< of con
tinuous 2n-periodic functions, there exists the unique minimax
trigonometric polynomial en(f; t) satisfying

f(tt}-en(f;tt}=(-I)k yEn(f), k=0,1, ...,2n+l, (5)

where O:(t(j<tr< ... <t2n <2n, Y equals 1 or -1, and En(f)=
Ilf- en(f)II. Thus in the trigonometric case the Chebyshev alternation set
{t2' Hn~+o 1 consists of (at least) 2n + 2 distinct points in [0, 2n). Taking into
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account this analogy and keeping in mind the above-mentioned valuable
approximation properties of the vn(f; T; xl-polynomials, one can pose a
natural question of how to extend the notion of the v,l/; T, xl-polynomials
to the trigonometric approximation.

The first, and to our knowledge the single, attempt to construct a
trigonometric analog of the vn(f; T; x )-polynomials is due to Malozemov
[15]. In this paper the author introduced the trigonometric polynomials of
degree :( n which alternate with respect to a given 2n-periodic function at
the set of points {kn/(n + I)} ~''=~/. Malozemov established some properties
of these polynomials and estimated the norm of the corresponding
operator. Cheney and Rivlin obtained a precise expression for the operator
norm [5]. It should be emphasized that the approach of Malozemov does
not take into considertion the inherent difference that exists between the
algebraic and the trigonometric approximation. In the algebraic case the
choice of the T-nodes as an alternation set is justified by Bernstein's result
which guarantees that for sufficiently smooth functions the Chebyshev
alternant tends asymptotically to the T-set of points. In particular, for
algebraic polynomials of degree (n + 1) the Chebyshev alternation set coin
cides with the T-set for every n. In contrast, for a trigonometric polynomial
of degree (n + I) a cos(n + I) t + fi sin(n + 1) t, the Chebyshev alternation
set, which is known to be {kn/(n+l)+arctan(fJ/a)H',=~)1 (see [17J),
depends on the ratio fi/a. In other words, in the periodic case the location
of the Chebyshev alternant depends also on the "degree of evenness" of
f(t).

Motivated by this observation we introduce in the present paper the
trigonometric polynomials induced by equioscillation at appropriately shif
ted equally spaced nodes. Our attention is concentrated on two specific
choices of the shift-parameter by means of which two sequences of
functionals AnU), BnU), n = 1,2,..., are defined. The study of the charac
teristic properties of these functionals, which Section 3 is devoted to, is a
main purpose of this paper. We first prove (Theorem 2) that under some
slight restrictions on the order of the Fourier coefficients an approximated
function f( t) is determined by the sequences A nUl, BnU), n = 1, 2, 3, ... ,
uniquely up to an additive constant. Theorem 3, together with the
representations (12), (13), establishes a close relationship between the
Fourier coefficients and the functionals AnU), BnU).

In conclusion we study the relationship between the differential proper
ties of I(t) and the rate at which AnU) and B,,(f) approach zero. We
prove for illustration one result of this type (Theorem 3), namely, that if
AnU) = O(l/n l +X), BnU) = O(l/n 1 +X), thenf(t) belongs to the class Lipa.
This result is similar to the result of Lorentz concerning the relationship
between the differential properties of an approximated function and the
behavior of its Fourier coefficients [13].
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Let f(t)EC 2" and tk=hn+{kn/(n+I)}, k=O, 1, ...,2n+1, O~hn<

n/(n + 1). We introduce the trigonometric polynomial vn(f; hn; t) = rJ. o/2 +
L~~ 1 (rJ. v cos vt + /3v sin vt), the coefficients of which are defined together
with the parameter VAf; hn ) from the linear system

k=O, 1,... , (2n+ I). (6)

THEOREM 1. For any f(t)EC2Jr and any hn(O~hn<n/(n+ I», there
exists a unique trigonometric polynomial vnCi; hn; t).

Proof It follows from (6) that

211 + I 2n + I

I (_I)k{(~I)k V,,(f;hn)+vn(f;h,,;tk )}= I (-I)kf(tk ). (7)
k~O k~O

Taking into account that

2" + I

I (_1)k eimtk = eimhn(2n + 2),
k ~O

=0,

we find

m = (2), + I)(n + I), ). = 0, 1,2,...,

(8 )
otherwise,

(9 )

After the substitution of (9) in (7), we arrive at a system of (2n + I)
equations for the coefficients rJ.o, rJ. 1 , /3" ..., rJ. n, /3n- As may be easily verified
the determinant of this system for any hn (0 ~ h" < n/(n + 1» does not
vanish and thus the theorem follows.

By analogy with the algebraic case, the polynomials v,,(j; hn ; t) will be
called the alternating trigonometric polynomials. For fixed hn the
polynomial v,,(f; h,,; t) may be interpreted as a linear projection from C 2"

onto the trigonometric polynomials of degree ~n, while the parameter
V,,(f; hn ) is a linear functional on C 2". The inequality of de La Vallee
Poussin (see e.g., [7]) involves

max IVn(f; hn)1 ~ E,,(f).
O~hn<7[/(fl+ I)

(10)

Note that the equality in (10) holds if, in particular,f(t) is a trigonometric
polynomial of degree (n + I).
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Turning to the question of a favorable choice of the shift-parameter hi"
let us suppose that f(t) belongs to the class F of functions which can be
expanded in an absolutely convergent Fourier series:

F ~f {f(t) = aal2 + k~1 [ak cos kt + bk sin ktJ, kt (Iakl + Ibkl) < const}

Then it follows from (9), by taking (8) into account, that

x

VnU;hn)= L {a(2s+I)(n+I)·COs[(2s+ I)(n+ l)hnJ
\'= 0

+ b (2s+ 1 )( n + I ) • sin [ (2s + I )(n + I ) hn J). (11 )

In particular, if we define AnCl) = VnU; 0) and BnU) = VnU; nl2(n + 1)),
then

An(f)=an+1 +a 3(n+lj+a S(n+I)+ ... ,

Bn(f)=b n+l -b3(n+I)+b(Sn+lj- ...,

n = 0,1, ... ,

n=O, I, ....

(12)

(13)

Note that (12) is identical with Bernstein's representation (4) for the
algebraic case. The lower bound for EnU) in terms of AnU), BnU) will be

{A;,Cl) + B;,Cl)} 1/2:s; J2 EnU)· (14)

Since AnU)=O, n=O, I, ... , whenf(t) is odd, while BnU)=O, n=O, I, ... ,
for even fit), the ratios BnU)IAnU) measure the "degree of evenness" of
fit) and may be used to determine a suitable value for the shifrt-parameter
h n . For sufficiently smooth functions it is reasonable to accept that a
favorable value h: corresponds to the requirement of maximizing the prin
cipal part of expansion (II). This together with (12), (13) leads to the
approximate formula

* I B,Jfl
h n :::::;--1 arctan-If .

n + An )
(15 )

We conclude this section by noting that the alternating trigonometric
polynomials based on the equally spaced nodes with the shift-parameter
defined by (15) may be recommended as a first approximation to the
minimax polynomial in constructng the trigonometric version of the Remes
algorithm.
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It has been shown by Eterman [10] that in the algebraic case for a wide
class of functions the sequence Vn(f; T), n = 0, 1,.", determines an
approximated function f(x) uniquely up to an additive constant. In the
following we prove an analogous characteristic property of the sequences
An(f), Bn(f) for the trigonometric case. We start with the following
lemma.

LEMMA 1. The two linear systems

'x

L C(2v+l)n=0,
v=o

OCJ

L (-I)"C(2v+l)n=0,
\,=0

n = 1, 2, 3,,,.,

n = I, 2, 3,...,

(16)

(17)

with L:~ 1 len I < 00, admit only the trivial solution.

Proof Since the proof of the lemma for the first system is given in
[10], we restrict ourselves to (17) and apply the method of [10]. Let
Sn=L~~o(-I)"c(2V+l)n and denote by Pl,P2,.,.,Pb". the successive
primes starting with PI = 3. First, we observe that all C (2s + I )npi appear in
SnPi either with the same signs as in Sn or with the opposite signs. Let cnp,
denote the sign with which cnp, appears in Sn- In order to prove that Cn=°
consider the sum

We claim that this sum contains no elements Cnll-odd) with 1 <1<Pk+l,
while Cn and the elements Cn! corresponding to I~Pk+ 1 appear in this sum
at most once. Indeed, the assertion is obvious in case the canonical prime
number decomposition of I does not contain PI' P2, ... , Pk' Otherwise (i.e., if
I = p~l ... p~:: with PI ~ i 1 < < im~ pd, Cn! appears once in Sn; ('n times
in the first group {SnPI' ' SnpJ, ('2) times in the second group
{Snpl P2 ,..., S npk _1Pk}' and so on. Taking into account the signs, we find that
in this case Cn! appears

Hence

en = - 8 npk + I Cnpk + 1 - •••,
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f~

ICnl ~ L IcJ (19)

Letting now k ---+ 00, we get Cn = 0, n = I, 2, 3,....
Now we are in a position to prove the following.

THEOREM 2. Let fl (t), f2( t) E F, and for any n = 0, 1, 2, ... ,

An(f,) = A n(f2),

Bn(fl) = Bn(f2)'

Then

(20)

(21 )

Proof Let f(t)=f,(t)-j~(t). Then f(t)EF and hence f(t)=a o/2+
L.~~ 1(an COS nt + bn sin nt) with L.~~ 1 lanl < 00 and L.I~~ 1 Ibnl < 00. Further
more, relations (20) yield that An(f) = Bn(f) = 0, n = 0,.... This implies in
view of (12), (13) that

(x;

L G(2.v+ I)n = 0,
S~O

I (-I)'b(2s+')n=0,
s=o

n = 1,2,... ,

n= I, 2, ....

It remains to apply Lemma I; the result follows.
For the derivation of our next result we need some properties of the

number-theoretic Mobius function J1(n), which is defined as [12J

J1(n) = 1,

= (-1 r,
=0,

if n = 1,

if n is the product of s(s:;::: 1) distinct primes, (22)

otherwise, i.e., if the square of at least one
prime divides n.

The following is a basic property of J1(n) [12]:

I {l(d) = 1
din

=0

for n= 1,

for n>l,
(23)

where the summation is performed over all the divisors d of the number n.
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In order to give an effective algorithm for recovering f(t) by means of
the sequences An(f), Bn(f), n = 0, 1,2,... , we introduce the class Ex of
functions such that the Fourier coefficients are of the order

:x>0. (24)

THEOREM 3. Let An(f), Bn(f), n = 0, 1, ...,/or fE Ex be given. Then there
exists a unique solution to each of the following two linear systems for the
Fourier coefficients off(t):

U0

An~~I==An-ICl)= L a(2m+I),I'
m~O

oc

Bn- 1== Bn_ ttl) = L (_I)'n b(2m+ 11'1'

m=O

The solutions are given by

'~f~

all = L p,(2s+ I)A(2s+I)Il-1,
s=o

x

bn= L (- I )' p,(2s + I) B(2s ~ I)n - I'

s=o

n= 1, 2, 3, ...,

n= 1,2,3,....

n= 1,2,...,

n= 1,2,....

(25)

(26)

(27)

(28 )

Prool Since (27) has been established in [I OJ, we restrict ourselves to
proving (28). Conditions (24) guarantee, in view of Lemma 1, that the
system (26) has a unique solution. To show that this solution is of the form
(28), note first that for any f( t) E E, there is absolute convergence in (28),
since after the summation of the two sides of (13), we find

"J_ '-f.-

L IBnl < L t(n) Ib,,I.
1/=0 n=l

(29)

In (22), t(n) denotes the number of divisors of n, which is known to satisfy
[ 12J

lim t(n)=O,. ,
n -+ Cf_' n'

any £>0. (30)

By substituting on the right-hand side of (13) in place of bll the expression
(28), we get

x oc ~

L (-I)'llb(2mtlln= L L (-I)mtsp,(2s+I)B(2stl)(2m+l)Il_1· (31)
J11 = 0 111 = 0 s = 0

MO/49,'1~6
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In the double sum above, each B(2/ + 1111 I appears a finite number of times,
i.e., the number of representations: (2). + I) = (2.1 + 1)(2m + I). It is clear
that (- 1 )m + , = ( - 1)! and hence

J. f

L L (-I)mts p (2s+I)B(2s+I)(21/l+lln I
m=Os=O

I (-I V B(2i+ 1)11-1 { L P((I)}.
/.~() d/V.+ I

(32)

It remains to apply the basic property of the Mobius function (23) which
gIVes

'x' x,

L L (- I)'" + S p(2s + I) B I2s + 1)(2", + 1)11 I = BII I'

m=Os=O

The result follows.
For any f(t) E C 2n , AnU) and BnU) tend to zero with n ---+ 00 at a rate

which depends upon the differential properties of f(t). Since
IAnUI :(, EnU'); IBnUI:(, EnU), one can derive estimates for the order of
growth of AnUl, BIIU), from the corresponding Jackson results [17]. The
more interesting results are those of the converse type, i.e., that the
behavior of AnUl, BnU) gives valuable information concerning the dif
ferential properties of the aproximated function. We prove here only one
result of this kind. Recall that f( t) E C2n is said to belong to the class Lip CI.

if for all t I' t2 If(t I) - f(2)1 :(, Mit 1- t21~, with some constant M.

THEOREM 4. Let f(t) E F, and for 0 <:I. < I, n = 1,2'00"

(33)
const

IBJf)1 :(,~'
n

Then f(t) belongs to the class Lip:l..

Proof Conditions (33) guarantee an absolute convergence of
L,~op(2s+1)A(2s+1)n I and L;~o(-I)'p(2s+1)B(2s+l)n j, and
hence, by repeating the arguments used in the proof of Theorem 3, we
obtain

'0

an= L p(2s+I)A I2s +l )n I'

,,=0

X

bll = L (-I)'p(2s+I)BI2s + l )nl'
s=o
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Thus for n ~ 2,

ococ 1
lanl::S; s~o IA(2s+ l)n-ll ::S;const s~o [(2s+ 1) n-l]I +,'

ocxc 1

Ihnl ::s; s~o IB(2s + I )n- II ::s; canst s~o [(2s + 1) n _ 1] IH'

and hence

Ih I canst
n < 1+,'n

73

(34 )

It remains to apply the result of Lorentz [13] asserting that (34) implies
f(t)ELipct (O<ct< 1).
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